metabelian, supersoluble, monomial
Aliases: C62.117C23, C23.17S32, C6.71(S3×D4), (C22×C6).77D6, C6.69(C4○D12), C3⋊4(C23.9D6), C6.D4⋊12S3, C6.D12⋊6C2, (C2×Dic3).46D6, Dic3⋊Dic3⋊20C2, C2.30(Dic3⋊D6), C6.56(D4⋊2S3), (C2×C62).36C22, C2.29(D6.3D6), (C6×Dic3).27C22, C32⋊14(C22.D4), (C2×C3⋊S3).27D4, C22.140(C2×S32), (C3×C6).163(C2×D4), (C3×C6).87(C4○D4), (C2×C6.D6)⋊15C2, (C2×C32⋊7D4).8C2, (C3×C6.D4)⋊16C2, (C2×C6).136(C22×S3), (C22×C3⋊S3).33C22, (C2×C3⋊Dic3).71C22, SmallGroup(288,623)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C62.117C23
G = < a,b,c,d,e | a6=b6=e2=1, c2=d2=b3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ece=a3c, ede=a3b3d >
Subgroups: 770 in 183 conjugacy classes, 46 normal (14 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, C23, C23, C32, Dic3, C12, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C3⋊S3, C3×C6, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C22×C6, C22.D4, C3×Dic3, C3⋊Dic3, C2×C3⋊S3, C2×C3⋊S3, C62, C62, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C3×C22⋊C4, S3×C2×C4, C2×C3⋊D4, C6.D6, C6×Dic3, C2×C3⋊Dic3, C32⋊7D4, C22×C3⋊S3, C2×C62, C23.9D6, C6.D12, Dic3⋊Dic3, C3×C6.D4, C2×C6.D6, C2×C32⋊7D4, C62.117C23
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C22×S3, C22.D4, S32, C4○D12, S3×D4, D4⋊2S3, C2×S32, C23.9D6, D6.3D6, Dic3⋊D6, C62.117C23
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 18 5 16 3 14)(2 13 6 17 4 15)(7 47 9 43 11 45)(8 48 10 44 12 46)(19 28 23 26 21 30)(20 29 24 27 22 25)(31 42 33 38 35 40)(32 37 34 39 36 41)
(1 31 16 38)(2 32 17 39)(3 33 18 40)(4 34 13 41)(5 35 14 42)(6 36 15 37)(7 27 43 20)(8 28 44 21)(9 29 45 22)(10 30 46 23)(11 25 47 24)(12 26 48 19)
(1 41 16 34)(2 40 17 33)(3 39 18 32)(4 38 13 31)(5 37 14 36)(6 42 15 35)(7 30 43 23)(8 29 44 22)(9 28 45 21)(10 27 46 20)(11 26 47 19)(12 25 48 24)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 19)(7 34)(8 35)(9 36)(10 31)(11 32)(12 33)(13 30)(14 25)(15 26)(16 27)(17 28)(18 29)(37 45)(38 46)(39 47)(40 48)(41 43)(42 44)
G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,47,9,43,11,45)(8,48,10,44,12,46)(19,28,23,26,21,30)(20,29,24,27,22,25)(31,42,33,38,35,40)(32,37,34,39,36,41), (1,31,16,38)(2,32,17,39)(3,33,18,40)(4,34,13,41)(5,35,14,42)(6,36,15,37)(7,27,43,20)(8,28,44,21)(9,29,45,22)(10,30,46,23)(11,25,47,24)(12,26,48,19), (1,41,16,34)(2,40,17,33)(3,39,18,32)(4,38,13,31)(5,37,14,36)(6,42,15,35)(7,30,43,23)(8,29,44,22)(9,28,45,21)(10,27,46,20)(11,26,47,19)(12,25,48,24), (1,20)(2,21)(3,22)(4,23)(5,24)(6,19)(7,34)(8,35)(9,36)(10,31)(11,32)(12,33)(13,30)(14,25)(15,26)(16,27)(17,28)(18,29)(37,45)(38,46)(39,47)(40,48)(41,43)(42,44)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,47,9,43,11,45)(8,48,10,44,12,46)(19,28,23,26,21,30)(20,29,24,27,22,25)(31,42,33,38,35,40)(32,37,34,39,36,41), (1,31,16,38)(2,32,17,39)(3,33,18,40)(4,34,13,41)(5,35,14,42)(6,36,15,37)(7,27,43,20)(8,28,44,21)(9,29,45,22)(10,30,46,23)(11,25,47,24)(12,26,48,19), (1,41,16,34)(2,40,17,33)(3,39,18,32)(4,38,13,31)(5,37,14,36)(6,42,15,35)(7,30,43,23)(8,29,44,22)(9,28,45,21)(10,27,46,20)(11,26,47,19)(12,25,48,24), (1,20)(2,21)(3,22)(4,23)(5,24)(6,19)(7,34)(8,35)(9,36)(10,31)(11,32)(12,33)(13,30)(14,25)(15,26)(16,27)(17,28)(18,29)(37,45)(38,46)(39,47)(40,48)(41,43)(42,44) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,18,5,16,3,14),(2,13,6,17,4,15),(7,47,9,43,11,45),(8,48,10,44,12,46),(19,28,23,26,21,30),(20,29,24,27,22,25),(31,42,33,38,35,40),(32,37,34,39,36,41)], [(1,31,16,38),(2,32,17,39),(3,33,18,40),(4,34,13,41),(5,35,14,42),(6,36,15,37),(7,27,43,20),(8,28,44,21),(9,29,45,22),(10,30,46,23),(11,25,47,24),(12,26,48,19)], [(1,41,16,34),(2,40,17,33),(3,39,18,32),(4,38,13,31),(5,37,14,36),(6,42,15,35),(7,30,43,23),(8,29,44,22),(9,28,45,21),(10,27,46,20),(11,26,47,19),(12,25,48,24)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,19),(7,34),(8,35),(9,36),(10,31),(11,32),(12,33),(13,30),(14,25),(15,26),(16,27),(17,28),(18,29),(37,45),(38,46),(39,47),(40,48),(41,43),(42,44)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 6A | ··· | 6F | 6G | ··· | 6Q | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 4 | 18 | 18 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 36 | 2 | ··· | 2 | 4 | ··· | 4 | 12 | ··· | 12 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | C4○D4 | C4○D12 | S32 | S3×D4 | D4⋊2S3 | C2×S32 | D6.3D6 | Dic3⋊D6 |
kernel | C62.117C23 | C6.D12 | Dic3⋊Dic3 | C3×C6.D4 | C2×C6.D6 | C2×C32⋊7D4 | C6.D4 | C2×C3⋊S3 | C2×Dic3 | C22×C6 | C3×C6 | C6 | C23 | C6 | C6 | C22 | C2 | C2 |
# reps | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 4 | 2 | 4 | 8 | 1 | 2 | 2 | 1 | 4 | 2 |
Matrix representation of C62.117C23 ►in GL8(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 5 | 8 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 11 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,8],[1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,5,5,0,0,0,0,0,0,0,8],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,11,12] >;
C62.117C23 in GAP, Magma, Sage, TeX
C_6^2._{117}C_2^3
% in TeX
G:=Group("C6^2.117C2^3");
// GroupNames label
G:=SmallGroup(288,623);
// by ID
G=gap.SmallGroup(288,623);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,120,254,303,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=b^6=e^2=1,c^2=d^2=b^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=a^3*c,e*d*e=a^3*b^3*d>;
// generators/relations